\(\int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx\) [53]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 96 \[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {2 c \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}} \]

[Out]

2*c*cos(f*x+e)*ln(1+sin(f*x+e))/a/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+cos(f*x+e)*(c-c*sin(f*x+e))^
(1/2)/a/f/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2920, 2819, 2816, 2746, 31} \[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a \sin (e+f x)+a}}+\frac {2 c \cos (e+f x) \log (\sin (e+f x)+1)}{a f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

(2*c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (Cos[e + f*
x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*Sqrt[a + a*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2819

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[a*((2*m - 1)/(
m + n)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
 EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m
]) &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a c} \\ & = \frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {2 \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a} \\ & = \frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {(2 c \cos (e+f x)) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}}+\frac {(2 c \cos (e+f x)) \text {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {2 c \cos (e+f x) \log (1+\sin (e+f x))}{a f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.40 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.18 \[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \left (2 i f x-4 \log \left (i+e^{i (e+f x)}\right )+\sin (e+f x)\right ) \sqrt {c-c \sin (e+f x)}}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (a (1+\sin (e+f x)))^{3/2}} \]

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-(((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*((2*I)*f*x - 4*Log[I + E^(I*(e + f*x))] + Sin[e + f*x])*Sqrt[c - c*
Sin[e + f*x]])/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(3/2)))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(207\) vs. \(2(88)=176\).

Time = 0.17 (sec) , antiderivative size = 208, normalized size of antiderivative = 2.17

method result size
default \(\frac {\left (2 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \cos \left (f x +e \right )+2 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )-4 \cos \left (f x +e \right ) \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )-4 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right ) \sin \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )+\cos \left (f x +e \right ) \sin \left (f x +e \right )+2 \ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-4 \ln \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1\right )+\sin \left (f x +e \right )+1\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}}{f \left (-\cos \left (f x +e \right )+\sin \left (f x +e \right )-1\right ) a \sqrt {a \left (1+\sin \left (f x +e \right )\right )}}\) \(208\)

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(2*ln(2/(1+cos(f*x+e)))*cos(f*x+e)+2*ln(2/(1+cos(f*x+e)))*sin(f*x+e)-4*cos(f*x+e)*ln(-cot(f*x+e)+csc(f*x+e
)+1)-4*ln(-cot(f*x+e)+csc(f*x+e)+1)*sin(f*x+e)-cos(f*x+e)^2+cos(f*x+e)*sin(f*x+e)+2*ln(2/(1+cos(f*x+e)))-4*ln(
-cot(f*x+e)+csc(f*x+e)+1)+sin(f*x+e)+1)*(-c*(sin(f*x+e)-1))^(1/2)/(-cos(f*x+e)+sin(f*x+e)-1)/a/(a*(1+sin(f*x+e
)))^(1/2)

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*
x + e) - 2*a^2), x)

Sympy [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )} \cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*cos(e + f*x)**2/(a*(sin(e + f*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(a*sin(f*x + e) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {2 \, \sqrt {a} \sqrt {c} {\left (\frac {\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {\log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{f} \]

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-2*sqrt(a)*sqrt(c)*(sin(-1/4*pi + 1/2*f*x + 1/2*e)^2/(a^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))) + log(-sin(-1/4
*pi + 1/2*f*x + 1/2*e)^2 + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(3/2), x)